
NAME: _______________________ ID: ________________ DOB: __/__/19__
Department/Program: TBK /  ___

Re-examination -- Mechatronics (NAMO05E)
Tuesday, August 26, 2008 (9:00-12:00)

Please write completely your name, student ID number and date of birth on this or  
the first page. For all subsequent pages, you only need to write your name and the  
page number. This is an open-book exam.
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Question 1. (Total mark: 25)
The iBOT® is an advance wheelchair system which (in addition to the standard 
wheelchair functionality) allows the user to climb the stairs and to balance itself on 
two wheels during its upright position (see Figure 1).

Figure 1. An iBOT® system.

This system is a mechatronics system which enhances the conventional wheelchair by 
using advanced information processing. 

a) Referring to the block diagram in Figure 2, identify possible measured 
variables, manipulated variables and reference variables in the system. 

(10 marks).
b) Also based on the schematic in Figure 2, identify possible sensors and 

actuators that can be used. (10 marks).
c) What would be the man/machine interface in this system. (5 marks)



Figure 2. Basic mechatronics block diagram.

Answers.

a). Possible measured variables: 
- angular position of the wheels
- angular velocity of the wheels
- angular position of the chair
- angular velocity of the chair
- electrical current in the motor
- voltage in the motor
- valve position in the hydraulic
- pressure in the hydraulic systems
- volume rate in the hydraulic systems
- the weight of the person

Possible manipulated variables:
- voltage in the motor
- current in the motor
- voltage / current to the valve mechanism in the hydraulic systems

Possible reference variables:
- angular position of the chair
- angular velocity of the chair
- angular position of the wheel
- angular velocity of the wheel

b). Sensors: 
For angular position: optical encoder, hall sensors, inductive sensor
For angular velocity: tachogenerator, hall sensors, inductive sensor
For pressure: strain gauge, piezoresistive sensor, other pressure sensor devices
For volume rate: pitot tube, venturi meter, other flowrate sensor devices

c). The man/machine interface:
Joystick which determines the desirable action of the wheel chair.



Question 2. (Total mark: 25)
Let us consider the pendulum system as shown in Figure 3. The transfer function of 
the linearized system around the equilibrium point (θ = π/3, 0=θ ) is given by 
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Figure 3. Simple pendulum.

The gravitational constant and the pendulum length are positive constants. 

(a). Evaluate whether the linearized system can be stabilized using Proportional 
controller only (C(s) = Kp). 

(10 marks)
(b). Suppose that we would use the Proportional + Derivative controller (C(s) = Kp + 
Kds) where Kp and Kd are the controller gains, find the conditions on Kp and Kd such 
that the closed loop system (of the linearized system) is stable.

(15 marks)
Bonus question. Suppose that the gravitational constant g is between 9 to 10 and the 
length L is between 1 to 2. Using the Proportional + Derivative controller, determine 
the stabilizing gain Kp and Kd that can deal with the uncertainties of g and L. (The 
inequalities for Kp and Kd should be in numbers.) (Bonus: 10 marks)

Answers.

a). The sensitivity transfer function is:
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By using Routh-Hurwitz stability test, we need the following:
- All coefficients in χ must be positive and non-zero. Since the coefficient 

corresponding to s is equal to zero, and any selection of Kp cannot make the 
coefficient correspond to s to be positive, then the system cannot be stabilized 
by Proportional controller. 

- The checking of Routh array is unnecessary in this case. 
b). The sensitivity transfer function is:

θ

m

L



sKK
L

g
s

L

g
s

sCsG
dp ++−






 −

=
+

2

2

)()(1

1

2

2

By using Routh-Hurwitz stability test, we need the following:
- All coefficients in χ must be positive and non-zero. This implies that 
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K p , 0>dK . Hence by choosing Kp > g/2L and 

Kd > 0 the positivity of coefficients in χ is guaranteed. 
- The first column of Routh array must not changed sign. The Routh array for χ 

is given by

1 Kp-g/2L

Kd 0

Kp-g/2L 0

The first column of the array is positive if Kp > g/2L and Kd > 0.

Question 3. (Total mark: 25)
Consider the robotic manipulator shown in Figure 4. The cylinder can rotate using the 
external  torque located  at  the base.  The beam inside the cylinder  is  able  to move 
translationally along the radial axis via an external force (hydraulic). The robot shown 
in Figure 4 is called Polar Robot. 

Figure 4. Polar robot.

Figure 5 depicts the diagram of the corresponding robot in the horizontal plane (i.e., 
we  consider  only  the  2  dimensional  movement).  The  variable  θ is  the  angle  of 
cylinder and r is the distance between centre of mass of both parts. The mass of the 
cylinder is M and the mass of the beam is m. The moment of inertia (at the centre of 
mass) of the cylinder is J1 and the moment of inertia of the beam is J2. 



(a) (b)

(c)
Figure 5. Diagram of polar robot: (a). The whole system, (b). The cylinder part, (c). The beam part.
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It is assumed that there is no gravitational force affecting the system. 
(a). Show that the kinetic energy of the polar robot is given by 
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(Hints: The kinetic energy includes the translational kinetic energy as well as the rotational kinetic 
energy).

(b).  Using  the  Euler-Lagrange  equations  with  the  above  kinetic  energy,  with  the 
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where T is the external torque and F is the external force, compute the equations of 
motion of the system. (Note that the potential energy is 0). (15 marks)

Answers.

a). The kinetic energy is given by:
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b). In order to compute the equation of motions via Euler-Lagrange, we first compute 
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Based on the above equations, we can now compute the equation of motions. The first 
one:
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The second one:
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Question 4. (Total mark: 25)
Consider again the polar robot as described in Question 3. We would like to use the 
Newtonian approach to derive the equations of motion of the system. Figure 6 shows 
the forces that contribute to the movement of each part. It is assumed that the point of 
contact between the cylinder and the beam is located at the end of cylinder. All parts 
are considered to be rigid and there is no friction between the both parts. 

FR,1 and FR,2 are reaction forces from the base, FR,3 is reaction force that occurs from 
the interaction between both parts.  T is the torque that is applied at the base of the 
cylinder and F is the radial force that is applied to the beam. 

The variable θ is the angle of the cylinder and r is the distance between centre of mass 
of both parts. The mass of the cylinder is  M and the mass of the beam is  m. The 
moment of inertia (at the centre of mass) of the cylinder is  J1 and the moment of 
inertia of the beam is J2.
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It is assumed that there is no gravitational force affecting the system. Using these 
coordinate system, we have 
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(a) (b)
Figure 6. Diagram of the forces in the polar robot: (a). The cylinder part, (b). The beam part.

(a). Define the horizontal and vertical Newton’s laws for the cylinder (at its centre of 
mass). (5 marks) 
(b). Define the horizontal and vertical Newton’s laws for the beam (at its centre of 
mass). (5 marks)
(c). Define the rotational Newton’s law for the cylinder and the rotational Newton’s 
law for the beam. (5 marks)
(d).  Using the six equations  from part  (a),  (b) and (c),  show that  the equation  of 
motions of the polar robot is given by 
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(10 marks)
(Hint: The second equation is obtained by multiplying both sides of the horizontal Newton’s law of the 
beam by cos(θ), by multiplying both sides of the vertical Newton’s law of  the beam by sin(θ), and 
then  adding  the  resulting  equations  together.  To  get  the  first  equation,  we  need  to  extract  three  
equations: 
A). Multiplying both sides of the horizontal Newton’s law of the cylinder by -sin (θ), multiplying both 
sides of the vertical Newton’s law of the cylinder by cos(θ), and then adding the resulting equations 
together. 
B). Multiplying both sides of the horizontal Newton’s law of the beam by -sin (θ), multiplying both 
sides of the vertical  Newton’s law of  the beam by cos(θ), and then adding the resulting equations 
together. 
C). Combining the two rotational Newton’s law for the cylinder and the beam by adding them. 
Then, substitute C) to A) in order to eliminate FR,1 . The result is then substituted back to B) to get the 
final solution. 

Bonus question. Define the state equations of the polar robot based on the above 
equations of motion.  (Bonus: 10 marks)
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Answer:
(a) The horizontal and vertical Newton’s laws for the cylinder (at its centre of mass) 
are given as follows:
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(b) The horizontal and vertical Newton’s laws for the beam (at its centre of mass) are 
given as follows:
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(c) The rotational Newton’s law for the cylinder is:

22
1

1,
1

3,1
L

F
L

FJ RR −=θ

The rotational Newton’s law for the beam is






 −−= r

L
FJ R 2

1
3,2θ

(d) Let us compute the first equation of motion. 
Multiplying both sides of the horizontal Newton’s law of the cylinder by -sin (θ) and 
multiplying both sides of the vertical Newton’s law of the cylinder by cos(θ), we get:
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Multiplying both sides of the horizontal Newton’s law of the beam by -sin (θ) and 
multiplying both sides of the vertical Newton’s law of the beam by cos(θ), we obtain
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Adding both equations, we get
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Adding the two rotational Newton’s law for the cylinder and the beam, we get
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Substituting (C) to (A), we get
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Now we will compute the second equation of motion:
Multiplying both sides of the horizontal Newton’s law of the beam by cos(θ) and by 
multiplying both sides of the vertical Newton’s law of the beam by sin(θ), we get
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Adding these two equations, we get the second equation of motion:
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